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PATH - INDEPENDENT INTEGRALS IN FINITE ELASTICITY AND INELASTICITY, WITH BODY

FORCES, INERTIA, AND ARBITRARY CRACK ~ FACE CONDITIONS:
’

. Satya N. Atluri*
Center for the Advancement of Computational Mechanics
School of Civil Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332
Abstract:

In this paper, certain path-independent integrals, of relevance in the
presence of cracks, in elastic and inelastic solids are considered. The hyp-
othesized material constitutive properties include: (1) finite and infinit~
esimal elasticity, (ii) rate-independent incremental flow theory of elasto-
plasticity, and (iii) rate-sensitive behaviour including elasto-viscoplasticity,
and creep. In each case, finite deformitions are considered, along with the
effects of body forces, material acceleracion, and arbitrary traction/displace~
ment conditions on the crack-face. Als. the phvsical interpretations of each
of the intearals cither in terms of (ravk-tip energy release rates or simply
energy~rate differences in two comparison cracked-bedies are explored. Several

differences between the results in the present work and those currently con-

siderved well established in literature are pointed out and discussed.
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Introduction:

Since the pioneering work of Eshelby [l], and independent discovery of
Rice [2]), innumerable number of papers have appeared in literature concerning
path-independent integrals (for the most part however, concerning the so-
called J~integral) and their application to mechanics of fracture. No attempt ;
is made herein at a comprehensive survey of this still burgeoning literature.
Of particular relevance to the present work are the important studies, on con-
servation laws in finite and infinitesimal elasticity, by Knowles and Sternberg
[3], and the interpretation of these in the context of the mechanics of cracks
and notches in 2-dimensional bodies by Budiansky and Rice [4]. 1It is noted that

the studies in [1-4] are restricted to elasto-statics, and the crack-extension

considered, if any, is of quasi-static nature i.e., inertia is considered neg-
li~ible. As is often noted in literature, the so-called J-integral in elastos~
tatic crack mechanics is in fact one of the components of a vector-integral,
and its relevance is in the context of incipient, self-similar, crack-extension.
Eventhouzh the so-called J-integral [1,2) was intended to be applicable
to finite or infin£tesimal elasticity, its use had been extended, in several
wirks in the past twelve years, far beyond the range of its apparent theo-
retical validity. Invoking 'deformation theory of plasticity" and/or "prop-
ortional loading"”, it was used in the context of initiation of '"Mode I" growth
of a crack in an elasto-plastic body. A wide class of literature has also
grown around the concept of the so-called "JIC test”. Rice [5], in an article

which appeared in 1976, and which is perhaps accurately representative even

today, succinctly summarized a wide body of literature pertaining to the use

of J in the context of elasto-plasticity. Later, based more or less on

empirical reasoning, J and the rate of change of J with crack length ('"dJ/da")

were postulated to be "valid" parameters characterizing even stable crack
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growth in ductile materials [6], wherein crack-growth necessarily implies un~
loading. However, the fundamental concept of a pat {ndependent integral and
its physical meaning, 1f any, in the context of an (even rate-independent) in-
cremental flow theory of plasticity yet remains to be explored.

In the class of problems penerally characterized as belonging to the
domain of "dynamic fracture mechaﬁics”, integral relations quantifying the rate
of energy-release to a propagating crack-tip in a plane linear elastic body
undergoing infinitesimal deformation were presented by Freund [7,8], who also
succinctly summarized the‘pertinent work of Atkinson, Eshelby, Achenbach, Sih,
and others. The path-independency, if any, of such integrals for energy-release
rates even in linear elastodynamic crack propagation yet remain to be understood.

To the author's knowledge, no work has been reported concerning path-
independent integrals, which may characterize the severity of the conditions near
the crack-tip, in materials cha-acterized by rate-sensitive inelastic con-
stitutive laws, such as, for instance, viscoplasticity and creep. However, in
the case of pure steady-state .reep characterized by a power law (of the type
é~cn), an integral J (or c*) \ 1ich is entirely similar to the J[1,2] for pure
power-law hardening materials (e~an) was iantroduced by Goldman and Hutchinson {9]
and Landes and Begley [10], based on the observed similarity of the coastitutive
laws in the respective cases (i.e., ¢ instead of e, etc.). However, the

physical interpretation, if any, of c* appears not to have been fully explored.

The present work represents a modest effort at a re-examination of path-
independent integrals, and their relevance to mechanics of cracks, in elastic
as well as inelastic solids. The postulated material behaviour includes the
cases of finite elasticity, rate-independent incremental flow theory of plas-

ticity, and rate~sensitive behaviour such as visco-plasticity and creep. 1In
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each case finite deformations are considered, along with the effects of body
forces, material acceleration, and arbitrary traction/displacement con-
ditions on the crack-face.

We start by considering the case of finite elasticity and attempt to
generalize the conservation laws given by Knowles and Sternmberg [3] to the case
when body forces, inertia, 4nd arbitrary crack-face conditions are accounted for. From
these conservation laws, we derive a path-independent vector integral of rele-
vance to fracture-mechanics. In this process, we re-examine the fundamental
notion of "path—independeﬁce", and the attendant mathematical and physical
reasoning, as originally propounded by Rice [2], and the results presented
later by Budiansky and Rice [4]. We specialize the obtained results to the
case of linear elastodynamic crack-propagation. To understand the physical
meaning of the "path-independent" integral vector, we make an 1 -dependent study
of the expression for the rate of energy-release in elastodynamir crack-propa-
gation. Several differences between the results in the present vork and those
currently considered well-established in literature are noted ard discussec.

In the second part of the paper, we consider conservatior laws, and the
attendant path-independent integrals, in the incremental theory of finite-
deformation, rate-independent, classical elastoplasticity. Once again we
include body forces, inertia, and general crack-face conditions in the discussion.
Also, we explore the physical meaning of the path-independent integral increm-
ental-vector, in the case of elasto-plasticity.

In the final part of the paper we consider finite strain rate-sensitive
inelasticity characterized by a elasto-viscoplastic constitutive law of the
type proposed by Perzyna [I1]. We also treat the well-known Norton's power-

law tvpe of steadv state creep as a special case. We point out certain "incre-

mental' integrals, which are: path-independent in a limited sense in the case




elasto-viscoplastic strains, and strictly path~independent in the presence
of combined elastic and creep strain rates. We explore the physical meaning
of these integrals as well.
Notation:

For convenience to the reader, we summarize the notations employed in

the present as follows:

) under symbol denotes a vector
) under symbol denotes a second-~order tensor
a=A.b implies al = Aiibj
C = A.B implies ¢t = alzp"]
. 13
A:B implies the trace: A Bij
A= AIJEigj a second-order teusor in dyadic notation
7 = g} ~3E gradient operator
P 3E
u,Au displacement vector and its increment
t : first Piola-Kirchhoff stress
s : second Piola-Kirchhoff stress
T : Cauchy stress
g ¢ Kirchhoff stress
3 t  co-rotational rate of Kirchhoff stress




Finite Elasticity:

Consider a solid body with an initial undeformed configuration B and a
deformed configuration b. Let the coordinates of a point P in B be EJ, with
primary base vectors QJ. The material particle at P in B is assumed to have
moved to the point p in 'b'. Let 'b' be defined by another set of arbitrary

cqs R ¢ i J
curvilinear spatial coordinates n, or by convected coordinates ¢ , with base

vectors g. and respectively. Let the vector of displacement of the particle
By 2;

from P to p be u = u{gj. The deformation gradient tensor F 1is:
i. . J J
Ij - F.J_g.’_(i - EJQ_
i
9§

t
wherein, use has been made of the dyadic notation. In terms of u, we can write:
. K
L G L

L K
F=F Gl = Cgrugd §8

K31

I(P) + e 2)

where I(P) is the identity (metric) tensor at P, and ( ),K denotes a covariant

. K . .
derivative w.r.t. § at P. We see that the displacement gradient tensor e is:

L K
e = u’KgLE . (3)

Let t be the tensor of true or Cauchy stress at p, which measures tractions on
an oriented surface (dan) at p. If the image of (dan) in the undeformed
configuration is (dAN) at P, we define the first and sccond Piola-Kirchhoff

stress tensors, denoted here by t and s respectively, as:

)

(dAN) . t = dan . T (4)

-T

[}

(dAN) . s = (dan) . (x.

[ieo]

) (5)
-1 T

where (~) denotes an inverse of a tensor, and ( ) denotes a transpose.

Using the geometrical relation

(dan) = J(daN) . F ! (6)
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where J is the absolute determinant of E (or the determinant of the matrix

[F?k]). Eqs. (4) and (5) lead to:

S S S - <)
s=J Lt F =F .g.F =t.E" (8)
where, ¢ = J1 is the Kirchhoff stress.
Noting that:
IS TNREL I SRS SO it SR 9
o= (F ) 0 =758 =658
an
and
1. 3 K, L
TS T I8 ST 18 (10)
we have: !
BEJ i n K* L
B e T LT aia)
an .
and
J _ L
s =% M3 g, (11b)
~ m n ~J-L
an an

Let W be the strain-energy densitv measured per unit volume at P in B, Then it

is known that:

5? = 3§ =t 12)
and
W oW
—_— 2 —_— = ~ l
dy aC H (13)

where C = FT.F and y = %[C-I(P)] is the Green-Lagrange strain tensor. The

equations of linear (LMB) and angular (AMB) momentum balance conditions are:

(LMB) 29 .t + oo(ffg) =0

or 7, . [s.E'] 40 (f~a) = 0 (14a,b)




F
or s =35 . (15a,b)

Compatibility:

F=1(p) +¢= (5g+ub) 6"
or y = %[UL,K + UL + thuM,K] ELQK. (16a,b)
Boundary Conditions:
N.t=N.(s.F)=¢tat S, (17a)
u=uats. (17b)

For our present purposes, we restate Eq. (17b) in a bit more ambiguous, but
still physically meaningful form as:

at SF' (17¢)

el

F =
The AMB condition, Eq. (15a) is automatically satisfied provided W is a

frame-indifferent function of F [i.e., for instance, when W is a function

of F only through W(F) = W(C) W(FT.F)] and t is defined through Eq. (12).
In Eq. (14), s is mass/unit volume at P in B, f are arbitrary body forces
per unit mass, and a is the absolute acceleration of the material particle

L 2 2 L .. L . . - .
{a = aLg = (d uL/dt ) G uLQ_]. Likewise, in Eq. (l7a), t are prescribed

are fields that

le

tractions per unit undeformed area Sc of B. Ift, s, F, e,
satisfyv Eqs. (12 through 17), we now show that for any close volume V, which
is free from anv singularities or other defects, in the configuration B, the

following identities®are valid:

) 0 :f[v_pw-gp.(;.5)-00(£-3).F]dv +f (N.t-t).Fds +| N.t.(F-F)ds (18)
v S ‘ ot

“t F

N

[/

0 =f[;Pw—gp.(:j.g)-.wj([—g).ljldv +f (N.s.F D). Fds +f N.s.FL. (F-F)ds
. . o . ;. L

t
- 19)
* These represent a generalization of the conservation law given in [3], o the
case when bodv forces, inertia, and arbitrary crack-face conditions are considered

-




In the above, we made the assumption that the material is homogeneous, i.e.,
W is a function of the location P in B only by virtue of the fact that F is,
in general, a function of P. The proof of Eq. (18) is evident from the fol-

lowing:

9F
r = 0 (2 - ot [ ]
13 H B 3¢

LiT . L[ m ) K_J
g& .(@q]—g B.c§“.<%ﬁqgg]

L| MN K J _ JL{ MN

whera ( ),1 denotes covariant differentiation w.r.t. £L. And,
Yp - (.B) = g". ;_EI[CWFNK%@K]
.
- (tMNFNK)’MQK - (thNL)’MEL
= (tm’MFNL*thNL,M)—qL' (21)
But P ™ Cyptug, oy ™ Oy = Gydon
- —(GNMJMN,M)’L = (o (22)

since, the metric tensor behaves as a constant during covariant differentiation.
Thus, equation (21) can be written as:

(tMN F MNF

L
+
M NL € )6

M, LTS

Ip - (t.F)

T (23)

) . F 4 (£ D). 10

Upon using Eqs. (20), (23), (l4a), (17a), and (17¢), the validity of Eq. (18)

X . Lo T T
is immediately evident, When it is noted that t = s.F', and F .F=C, the proof

of Lq. (19) is apparent. An independent proof, follows from:

Lo R S P T
EPW-E[? . (!)‘L]_g‘tb 'E[((L )\L' F+F

(F), 1}




L
Cl(s.ED + (E), 1. (24)

=cis s e’ 0 -

Since s is a symmetric tensor. Further

Yo o [5Gl =0 o (s - B L Fl 2[5, .« (s FD] . P+ (.F & (F
. (25)

T PR, SR
(9 + (:ED] L E+ (5B 2 (F)y

b), (17a) and (17¢), the validity of Eq. (19) can be noted.

From (24), (25), (14
(18) and (19) in the

Using the Green-Gauss theorem, we can write Egs.

form:

(t.F)] ds - f o (f-a) . Fdv + f (N.t~t) . Fds
¢.z g o ) s - )

o
[}
<
'z
]
=

t
+ j N .t . (F-F) ds (26)
SF
= NW - N . (5.C) - f p _(f-a).Fdv + f (E.t-i) . Fds
v v ° S -
t
+ } N .t . (F-F) ds (27)
S,
F
aere JV is  he surface of V, and we assume that
=S +5_+5S 28
RAY gt bF Si' (28)
Thus, Eq. (26) can be written as:
0 - j (MW - N . (L.F)] ds - f > (f-a) . Fdv
s, v ©
(29)

Jery

F] ds + f (NW-N.t.F) ds.
. ) t

+f (NW -
S

o
Eventhoustht Eq. (29) is

applicable to a general 3-dimensional case, an {llus-

tration of the 2-dimensional case is viven in Fig. 1, wherein Si' SF' and St

are depicted, and N is an unit outward' normal to W 4s shown also in Fig. 1

- 10 -~




Suppose we consider the cartesian coordinate system: X, along the crack

3 along the crack front, and con-

direction of the vector identity, Eq. (29).

surface, x2 normal to the crack face, and x
sider the component along the Xy
Let the problem be also a special case in which (i) the crack-faces are free
of tractions and any imposed displacement conditions, (1i) the body forces £

are zero, and (iii) the inertia is negligible, i.e., the problem is one of

elastostatics. In this case, since N1 = 0 along the face, we have from Eq. (29),

j; G thijkl) ds : j; (N W~ thijkl) ds. (30)
BCD AFE

It is this sense of path-independence of the integral on T D’ and the as-

BC
sociated physical interpretation of the integral, that were essentially
presented by [2]. However, in the general case, {.e., the case in which: any
of the couditions (i) - (iii) above are not satisfied, and, in addition,

the compon 1ts in X, and k3 directions of the vector idemntity (29) are also of
interest, ‘e need to r--examine the above path-independence. For purposes

of understanding the :bove general case, let Qs apply*the result in Eq. (29)

to a vol ¢ V—VE as chown in Fig. 24, for a 2~dimensional problem and for 3-di-
mensional problem in Fig. 2b. For purposes of clarity in presentation, let us

consider, without loss of generality, the 2-dimensional case. In view of Eq. (29)

we then have, referring to Fig. 2a,

f [NW=-N.(t.F)] ds + f (NW-N. (£.F)] ds - f p,(f-a) . Fdv
r r N

561 234 v-v,
+ f (NW-C.F] ds + f (NW-N.t.F] ds
1 1"
P45 45
+ f (gw-g.lj] ds + f [NW-N.c.F] ds = 0 (31)
12 12

* Note that the divergence theorem cannot, in peneral, be applied when the volume
intepral contains a non=-integrable sineularitv., Thus, when velume V inciudes the
crack-tip, referring to Eq. (18), 7 W mav be of uvrder r-2 near che crack-tip (front)
and hence non-integrable.  Thus the'divergence theorem cannot be applied to (Eq. 18)
in the case of V, but onlvy in the case of V—Vrin the limit -=0.




where r56l is the contour with a unit normal directed inwards (into) V-VE

as in Fig. 2a. FZS and rzs are portions of r45 where tractions and displace-~
ments, respectively, are applied. Similar definitions apply to rIZ and rIZ.
Since the crack is mathematically a surface of discontinuity, it is seen that

N, which is a unit outward normal to r,s is equal to the negative of gf,

!
which is the outward normal to r12' We now write:

= d . _ 1 . .
fv-v PV = fv-v {dt (o 8-F] - 7, (5%5‘5)} dv
€ . [
. d . 1
- _/;,_v "d—c [0 8-F] - 7 - [(gpog.g);]} dv. (32)

- Nid e u - G i o) las. (33)

Using Eqgs. (32) and (33) in Eq. (31), we write:

)

o [ E D - At s [, W@pt+ @
M12 12

i d .
[N(W-T) - N . (E.f)] ds - j p f . Fdv + f ac (pog.F)} dv
V-V V-V
234 € €

f VDT - (D7) ds
12

f (N(W-T) = N . (t.F)] ds. (34)
T

Note that in the above, considering, without loss of generality, the segment

12 to be of the same length as the segment 45, the integrals on FGS and r12

in Eq. (31) have been combined into a single integral on alone, with

T12
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A

appropriate sign changes in the unit normal being accounted for. Further,

the notation for the kinetic energy density, T = (l/Z)QOQ,g has been employed:

and Pe is now equal to P165 with a unit normal acting inwards (into) (V-Ve)
as shown in Fig. 2a.

We now consider Eq. (34) in the limit when ¢+0, i.e. the volume Ve, and
the contour Pe shrink to zero. First consider the right hand side of Eq. (34).
Let re, in the 2-dimensional problem, be a circle of radius ¢, (In 3-dimensional
problems, we let Fe be a circular cylindrical surface of radius ¢, with the

axis of the cylinder being the crack front). Then,

e [ [Ne-T) - N . (£.F)] ds

e~0 Jr
[
+1
= N (W- - . .F de .
e LM ) - N ()] o (35)

It is seen that the right-hand side of ~j. (35), for a sharp crack, would vanish
identically unless W (and by dimensiona! considerat.ions, E.F), and T all have
singularities of the type r ¢ (with r,8 being'polar—coordinates centered at the
crack-tip) where a>1. However, since ihe total strain and kinetic energies in

a small core region near the crack-tip must be finite, it is seen that @ must

be equal to 1. Since W is a nonlinear function of F, F can be expected to have

a sinzularity of type r 8 with B<l; likewise t may have a singularity of type

-4 , . . . . .

r °, such that 3+§=1. It is worth noting that available solutioans in linear
elastodynamic crack propagation indicate that the material time derivative u
i/2

(or absolute velocity of a materfal particle) may have a singularity of r
On the other hand, 1f the crack is stationary, even when the dynamic effects

i . , +1/2 .
are accounted for, 0 varies as r [8]. Thus, in general, in a dynamic crack

propagation problem, the term on R.H.S. of Eq. (34) is non-zero for a sharp

=




crack, even in the limit as e€+0. We denote this non-zero limit as the vector

J. Thus, from Egqs. (34) and (35) we have:

d . .
[N(W-T) = N . (£.F)] ds + Lt [- f o £.Fdv + f 4 (o a.F) dv
./1: €0 v-v_ T v-vedt o

f Nty - (1) ds - f (E.0 + €7 ds
F12 ' 12

+

-f N B - ) dS}
12

[

Lt f [NW-T) - N . (t.F)] ds (36)
e+0 Jr_ T

£ J.

Note that the limit e€+0 in the term within brackets { } in the extreme left
hand side of Eq. (36) implies that: ‘1) in the volume integrals, a volume,
however small, near the crack tip must be deleted, and (b) in the crack face
integrals, an area, however small, neai the crack-front must be deleted.

Now, in view of Eq. (39) it is :cen that th. integral on the extreme

left-hand~side of Eq. (36) is path-ir-iependent* (Notc however, the volume

V—VC change for each path). It is worth noting that Eq. (36) implies that
the path 234, as in Fig. 2a, begins at the point 2 on the lower flank of the
crack, and ends at point 4 on the upper flank, such that points 2 and 4 are
equidistant from the crack-tip. However, this Is just for convenience, points

2 and 4 need not be equidistant; in which case the integrals on T in Eq. (36)

12

must be "split up" into integrals on both r12 and r65 as in Eq. (31).

Evidently, if one uses Eq. (27) and repeats the steps in Eqs. (31-36),

we obtain an equivalent representation for a path-indcpendent integral:

'];234

* Noto the fundamental difference in the notions ot path-independence as embodied
in Eqs. (30, 19) (which are due ro [2,4]) on the one hand, and the present [Eq.
(36) on the other. In Eq. (3b) it implies that the integral on the extreme L.H.S.

evaluated on the contours quj&ﬂ or qu.3,&.5 (see Fig. 2a) has the same value.

[(N(W-T) - N . s . (2y+D)} ds + Lt ‘— -/. p f . Fdv
X 2 i Y+l o ¢
v 0 '—VC




3 d . +, o+ = + - -+
+ -Iv-v 3 (P 8-F) dv + jl: N W -wT) - (T7-T)] ds - f [(E.F)
€ 12 12

+ (€M) ds - f NG Lt - PP ds}

12

Trivial as the difference may be from a theoretical view point, Eq. (37) is in fact

J. (37

more convenient from a coméutational view point, to calculate J from a far-
field contour, than Eq. (36), since most generally available computer programs
(finite~element!) use s and Y as primitive variables [1].

If we consider the s?ecial case when (i) deformations are infinitesimal,
and thus the distinction between various stress measures vanish, i.e., t=o, (ii) the
miterial is linear elastic and homogeneous, (iii) the material is under dynamic
equilibrium, and (iv) the geometries of the solid and crack are conveniently

described in a cartesian system, then Eq. (3.) is reduced, at any time t, to:

JK = .}; [NK(W—T) - NMUMJ(GJK+UJ,K)] ds
234

d

+Lt{—f-pf(6 +u )dv+{ — [p (5§ ,+u Y] dv
o v-v_ 0 JOIK UI,K Jov, dt Yo"yt IK LK

+ + - + - - + - -
+ fr NJ [((W-Ww) -(T -~-T )] ds ~ f' [< tJ(GJK+uJ,K)> + <tJ(6JK+uJ’K)> ] ds

12 12
+ =+ = -
- f NI Fot - e FLoT ds. (38)
12

This should be contrasted with the expression for linear elasto-static case,
when no conditions are prescribed on the crack-face, given in [2,4] denoted

here for comparison purposes, as J*:

* = -
JK .I; (WNK NMUMJUJ,K] ds. (39)
234

Thus, in the present J, Eq. (38), discontinuities of W and T across the

- 15 -




*are allowed for, in addition to its being applicable to the general

crack-faces
case as discussed.

It is interesting to note however, that even in the general case repre-
sented by Eq. (36), the following identity holds:

- N.t. .8 + Lt ‘— .l. p £.6
J; M MJ JK " es0 vy © J JK
234 €

d . ~ + - -
+ f TS (pouJGJK) dv f' <(tJ6JK) + (tJGJK) >ds}
V-V
€ 12
é
=Lt -f Nt § ds (40)
50 p MWK

€
since, Eq. (40) is nothing other than the global linear momentum balance con-

dition for the domain V-—Ve in the limit €+0. Thus we may reduce Eq. (36),

through a slight modification to the definition of J, as:

f [N(W-T) - N .. (t.e)] ds + Lt |— j p f.edv
T e+0 v-vy
€

d . -+ +-" + -
+f_v~ag(pog.g)dv+j; N[W-W)~-(T-T)] ds

12
J

Lt [N(W-T) - N . (t.e)] ds
e+0 re

L)

(.27 as)

[(E.e)” + (F.e)71 ds - f N (e
12

L
12

z J. (41)
Thus Eq. (41) represents a slight modification to the definition of J in as much

as F in Eq. (36) is now replaced by e[e=F-1].

We now examine the physical interpretation of J as presently defined
through Eq. (41). For this purpose let us consider the volume VE at time t.
It is to be understood that Vu is a small region at the crack~tip (front) witk
* Note that, based on physical considerations, we may assume that w+ and W along
the crack-face, in gencral, may have integrable singularities near the crack-

tip (front). aAn example whercin (W'-W=) # 0 at the crack-face has recently been
brought to the author's attention [13].




tue surface FE. Let we be the potential of external forces acting on VC, and
let wg and Tg be the strain energy and kinetic energy, respectively of Ve. It

1s seen that

[}

v = - f f.u.dv - f t uds - f {r t, (u,)du ]ds. (42)
€ v ii S ii r 0 i*i i
€ te €

I3
where St‘ is the crack surface(s) enclosed by FE. The last term on the r.h.s.
[
of Eq. (42) 1is the work of tractions exerted on VE by the surrounding solid,

and these tractions are dependent on the displacement field. Likewise, we have:

Fij
Wk = Wdv = { t ..)d d 43
* fv v L j; mn(ulJ) unm} v (43)
€ €
and
Tk = f Tdv = f lpix a, dv (44)
€ VA G §
VE Ve

where ﬁi is the absolute velocity of a material particle. In F. s. (42-44) car-

tesian coordinates X have been used for simplicity. Let S be the cartesian

coordinates of the crack-tip. Let ck(=xk-ck)'be coordinates centered at tae

crack-tip when the crack is of "length" ¢ It is seen that i.. general, in the

K
immediate vicinity of the crack-tip, i.e., in Ve, which may be considered to

be a '"process-zone', we may assume:
’

.t); t,, = ( .t)

up = u (e 15 - Y13

1 "k K

W= WG .cpsCpt)iT = T(G e ¢ t), (45)
Thus the variables g, t, W, and T may depend explicitly on the crack "length"

Ck’ crack-velocity ¢, , as well as time t. It is known that in the vicinity of

k
a sharp crack-tip (front), the displacements u, are noansingular (even though
the material velocity ﬁi may be singular), while W and T are singular: and

based on physical considerations, the singularities in W and T can be of order

- 17 -
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r  where r, 9 are polar coordinates centered at the crack-tip. Even in finite

bodies the representations (45) may be considered as being asymptotically cor-
rect within the "process-zone' irrespective of the geometry of the body and
loading. We may write at time t, for instance,

!

x = .
W fv W(Zgoegsd, t) dv (46)

and a similar expression for T* of v,

Now, let us assume that in time (dt) the crack "advances" by dc Let

X
gé be once again, the cartesian coordinates centered at the new crack-tip such

that ;é=§k—dck as shown in Fig. 3. Also, without loss of generality, let e=8dck,

g>1, such that the crack-tip which is within VE (say a circle of radius e centered
at the crack-tip) at time t, will not lie outside the fixec VE at time (t+dt).
Thus we are considering the case when the crack-tip advances by "dck" in time

'dt' into a fixed volume Ve' Analogous to Eq. (46), we may chen write:

. ) , -
Wk (t+dt) fv W(gp cirde & +dd,  tade) dv. 47)
€

We note that, in the asymptotic sense, the dependence of W on gé at t+dt for
a sharp crack is, in general, of the same functional form as the dependence

of W on Ty At t. Note also that in performing the integration as in Eq. (47),

the limits of integratlon for a fixed volume V in terms of ¢}
— t

“k

be different from those in terms of o in Eq. (46) (see Figs. 3a and 3b). How-

would, of course,

'=dr, , we have, by what amounts to a

ever, by noting that a&=(k-dck, and dck K

change of variables,

Wk(t+dt) = ./ﬁw[(ak-dck).(ck+dck).(ék+dék),(t+dt)] dv. (48)
v -

3

Now the limits of integration in Eq. (48), would be the same as those in Eq.

- 18 -




(47). Now, we may expand out the integrand on r.h.s. of Eq. (48) using Taylor
series and express it in terms of W(ck,ck,ék,t). However, it 1is recalled that

W is singular (viz., r_l for a sharp crack) w.r.t. 5 as ck*O, where as the

k

explicit dependence of W on Cpo ¢ and t is in general, non-singular. Thus,

3

while aw/ack, aw/aék, and 3W/3t are all integrable, the partial derivative
’ A

Bwlack would, however, be non-integrable. Thus the above idea of changing

variables is non-workable. Thus, we rewrite Eq. (47) as:

W (t4de) = f [HGa) ey a8, t) + —;‘cl de, + a—Bc‘f— ae, + % at] dv.  (48)
v k k

€

Now consider the term:
= (] - - .
1 j‘; W(gk,ck,ck,t) dv j; W(z;k,ck,ck,t)dv. (49)
€ €

Since the functional dependence of W on ci and L, are of the same form, we
can "subtract out” the singularities in evaluating I of (49) as sh,wm in Fig.

3c. From Fig. 3¢ it is apparent that the term I of (49) is given by:

= - Y
I fr (Wdeck) ds. (50

Note the negative sign on the r.h.s. of Eq. (50) is due to the definition of
the "outward" normal to the contour T in the sense indicated in Fig. 3c¢. (i..e,
a contour beginning at the "bottom" surface of crack and ending on the '"top"
surface]. Let us now define the derivative [D( )/Dt]C as the total rate of

change of ( ) in a time "dt" due to crack growth by "dck". Thus, for instance,

DWE
(o1 de = WE(E +de) - WH(e). (51)

From Eqs. (48), (49) and (50) it is seen that:

DWH
Cc X W, W o IW
—1% a - : ds + =S+ S ¢+ ) dv.
el ]; WN, ¢\ ds j\; (3ck “k 2, %t o0 (52)
£ [
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In the case of a dynamically propagating crack, the kinetic energy T may also

have (as is known [ 8], for instance, in linear elastodynamics) a singularity.

Thus, following essentially the same arguments as in Eqs. (46~50), we have:

DT*
(5 fTchs+ f (—— + & ¢ +3;—tT-)dv. (53)

k k Bck k

Finally, at times t and (t#dt), respectively, the displacements are given
Du
by uy and [u -+(———) dt] From the FEquations:

ui[t] = ui(ck,c t)

kK
and

- ' * e
ui[t+dt] ui(ck,ck+dc ,C, +d¢, ,t+dt)

k'’ k k
- B . . +
ui(ck dck,ck+dck,xk+dck,t df) (54)
it is seen that:
Dui c Bui Ju Bui Bui
P S R S N QS S 1 S 4 ")
Dt ng k Bck k Bck k 3t

Using Eq. (55), it is then seen from (42) that:

D\é c Dui c Dui c Dui c
—)" = - fo—H" - t, (=) ds- —) d -
(Dt) _]; fi (Dt) dv j; ! (Dt) ° _/; 4 (Dt) ° 6

€ tc €

where ti are tractions corresponding to u, at Q:at t. We will now consider

the "energy release rate' ‘to the crack-tip, as measured in the process-zone,
Ve' This energy release rate, denoted here by (DE€/Dt)C, is given, from the
energy balance within Ve’ by:

DE Dy DW DT
V’ - C [

Dt

(

(57)

Upon using (52), (53) and (56), we write (57) as:

DE Jui _ 2)u,l _ 3ui
(——) = lf [(W+T)N -t, —] ds - f ( N dv - [ t., —— ds
N v oo A

. N . . G oSt . . M
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(I) + (I1) + (III) + (IV) (58)

where (1), (II), (III) and (1IV) identify, respectively the first through fourth
terms each enclosed within { }, on the r.h.s. of Eq. (58). Suppose now that
for a dynmamically propagating crack, W, T, and tij au /ax [note that 3( )/Bx

= 3¢ )/aci] all have singularities of the type r-l. On the other hand, the
explicit dependence of these quantities on c

K c':k, and t are, in general, such

that their partial derivatives w.r.t. and t are also singular, but the

Cs ék’
singularity is still of order rgl. Suppose we consider a 2-dimensional problem

wherein Ve is a circular domain of radius e(EBdck) centered at the crack tip;

+1

f( Yedo (59a)
=N

€ +T

ff( Yrdrdo. (59b)
0 -1

Thus, for a 2-dimensional problem (the same argument carries over to 3-dimen-

f (  ds
T

€
f ( Ydv

v
€

i

I

sional case) for instance, the term (I) of Eq. (58) becomes:

N € +I
ui 1
(1) = f [(\~+r)\1 -t, —] ed® ff - rdrde
i. K)V'
)k (r-——\
]
[
_ ui _ Sui
-_[[(tl ) 4+ (e ) bdr (60)
k-0 Tk
N 0
; where SU, is defined by o = +1. Supposing that Ei and t are non-singular
-4
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v

near the crack-tip, while W, T and t_ u behave as r-l, it is seen that the

171,k
first term on the r.h.s. of (60) is independent of e, while the other terms are
0(e). Likewise, it is observed that terms (II), (III) and (IV) of Eq. (58a)

are all of 0(e). Thus, in general, we have from (58),

DE du

£.C _ . - _l.
(Dt ) = & "j; [(?HT)Nk ty 3, ] ds} + Q(e). (61)

Hence, in the limit, we may take for an arbitrarily small volume near the crack-

tip,
DEC c ' Sui
(—DT) = ck {f [(W+T)Nk - ti SE-] ds}. (62)
r k
€
~I- aui
= ¢ [(W+T)N, ~ £, —=] ds. (62a)
k r k i 3xk

€

Comparing Eqs. (62a) and (41) it is seen that:

DEC c .

(Ft—) = ck{Jk + 2 f Tdes
Fe

Thus, in the case of propagating cracks in elastodynamic fields, the path in-

. (63)

dependent integral J, of Eqs. (41), and hence Eq. (38), does not have the

k
physical meaning of encrgy release rate per unit crack-growth. However,

if we define the '"Lagrangean'" of the domain V as:

= - - WX *
Le we x + TE (64)

it can be immediateiy seen from Eq. (57), and the development that follows

thereon, that:

DL c DE c DT;

i C <
—_— = — + 2 —
(Dt) (Dt) (!)t)

Ju
& [(W=T)N, - t, =] ds
k j; k i oxk

: éka. (bbb

P




Thus the path-independent integral of (41), and hence (38), while not represen-
ting an "energy release', does still have a physically meaningful interpretation
of rate change of Lagraungean per unit crack growth.

On the other hand, for stationary cracks in dynamic elastic fields T is
nonsingular, while, in elasto-statics T is negligible altogether. In these cases,

it can be seen that:

DE

E\C
(Dt ) de dckJk (65)

and thus, Jk does have the physical meaning that it is the energy-release rate
per unit movement of the crack-tip in X direction.
In the linear-elastic case, an expression for energy-~release rate for a

crack extending in an elasto-dynamic field was derived by Freund [7] to be:

]

F = Lim (o,.n U0, + L o, U, .v.+ l-pl.J.l.J_v Yds. (66)
50 s ijji 2 "iji,i n 2 i'in

where, in the notation of'[7]: s is a "small” loop that moves along with the
crack- tip; Gij is the stress tensor; Ui are displacements; ﬂi are velocities,
nj are direction cosines of a unit normal to s pointing away from the crack-

tip, and Va is the '"component of velocity of a point on s in the direction of

n, (if the crack-tip is moving in the x, - direction with instantaneous speed

1
v, then vn=vnl). In deriving the above expression (66), a small loop of
unchanging geometry was supposed to be moving with the crack-tip and a global
energy rate balance was employed [71.

It is seen that the presently derived expression for energy release rate,
viz., Fgq. (62a) differs from that derived in [7]), viz., (66). As demonstrated
earlier, the present Eq. (62a) can be readily reduced to the well-known results
for energy release rates for elasto-static crack problem as well as for the
elasto-dynuamic problem when the crack is stationary. On the other hand Eq.

(66) of {7] is not readilv reducible to the above cases, without invoking
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certain other assumptions.

We now consider finite-strain inelasticity, but restrict our attention
to the two cases: (i) finite strain, classical rate-independent elastoplas-
ticity, and (ii) finite strain rate-dependent elasto-viscoplasticity
including creep as a special case.

Finite~Strain, Rate Indepehdent, Classical Elasto-Plasticity:

Because of the author's own interest in computational mechanics, the
following is presented in a fashion that is directly amenable to computations
based on, say, the finite élement method. However, the basic development
itself is divorced from any 'computational' overtones, lest they may be deemed
"bad".

At time t, the material particle P of B is located atp in b. At time
t + At, let the same material particle move to P;- As discussed before, the
spatial coor‘inates in b are nm, and the convected coordinates are EJ. Let the

vector pp, be Au.

*
T S | (67)

1

We define he incremer tal-displacement-gradient tensor Jle as:
m n
Ae = Au y
m;n2 &

(68)

]
~
>
[}
+
=
2]
B2

where 3¢ and 4w are, respectively, the incremental strain and incremental spin

referred to the current configuration at t and,

(Aum ~du ) g8 . (69)

,
to|—
o]

=]
.

3

1
Ag = ;(Aum.n+Aun,m) g8 Aw T

~ A ’

In the above and in the proceding, ( );‘ and  ( );] refer to covariant deriva-
1 N
., n J
tives{w.r.t. n and - respectively at p, using the merric Bon and gIK res-—

pectively) in the current contiguration. Let the Cauchy stress and Kirvchhoff

stresses, 1 and J respectively, at time t be represented as:

)
[
i~

)




J*K*

Bnfn T 7 ByBk

mn J*K*
T

JiTgg =1J Ey8y- (70)

the total, or substantial, or material increment of Kirchhoff stress,

Let Av be

such that,
Domn , :
('[')? )Atg g (71)

where § is the material derivative (for a fixed material particle, EJ =

Ag = gat =

const.), of g. For an objective stress-rate, to be used in the incremental
constitutive relation for an elastic-plastic solid, we take, following Hill
14], the co~rotatiomal increment of g (which is often referred to as the
Zaremba, or the Jaumann, or the rigid-body rate), which is denoted here by
A

Ac. It is well-known (see for instance [l4]) that

A

Q>

= A +0 . Aw - Aw . g, (72)

~

A constitutive law for the rate-theory of plasticity, as suggested by Hill

[14] is:
A AV -
8o = e (73)
where
-1 m, pq_ @ ke,2
av =3 LmnquL Ae (g)(XkQAe o, (74)

Eq. (74) leads to a bilinear relation. In Eq. (74): Lmnpq is a tensor of in-
stantaneous elastic modulii, which is + ve definite and symmetric under mn+s+pq
interchange; a=1, or 0 according to whether A:ipe is + ve or - ve, an

is a tensor normal to the interface between elastic and plastic domains in the

strain space, and g is a scalar related to a measure of rate of hardening due
to plastic deformation. For classical isotropically hardening materials,
the above constitutive law, which has been used by several authors in the

past few vears, as discussed in[l5], becomes:




B i dhd e ot

12au2(A§:g')g'
Ag = 2uhe + A(Ag:;); - (75)
(' :g") [6u+2(3F/aWP) )

where A and u are Lame's constants; g' = g - %(g:})} is the deviatoric

Kirchhoff stress at p, and the yield-surface is represented by: F = [3J2(g')]%
- F W) = 0; W = fg:Agpd,t and 1,(3") = (1/2)(g':g").

For purposes of the énsuing discussion, it should be noted that the con-
stant @ (which is equal to 1 or 0) in Eqs. (74, 75) is a function of the spatial
coordinates nm in b. Thus, a generic point p in b may be experiencing loading
(a=1) or unloading (a=0). Thus at time t, a depends on the location of p in b.

Let (1+At) represent the first Piola-Kirchhoff stress at p, at time (t+At),
as referred to the configuration b at time t. Then it is seen [15] that:

(Ao-Le.q)/J (76)

At

(AG-Ag .g=g.4w) /] (7n

]

where J=(po/pt) the ra io of mass densities in B and b respectively. Use has
been made of Eq. (72) in obtaining (77) from (76). Hence, in view of Eq. (73)

it is seen [15] that' a potential AJ exists such that:

.BQ-E'I_' = At (78)
JdAe
1 T
and AU = AV - g: (Ac.ae) + 5 g:(Ag .4e) (79)

Note AU = AU[a(p)], i.e., AU is a function of a(=0 or 1) which is in turn
a function of p.

Let a be the absolute acceleration (i.e,, the material derivative of the
velocity vector), of the material particle at (t+at). The acceleration a can
be expressed in terms of spatial bases g at t, or sometimes more conveniently
(from a computational viewpoint) in the rixed basces QJ at P at t=0. (see, for

instance, {15}.) The ficld equations at t+At can now be written as:




(LMB) it . [T+de] + . (f-a) = 0. (80)

(AMB) Ae . T + At = At' + 1 . fe' (81)
At = 3AU/dbe’; fe = Aum;n_gm_gn (82,83) ﬁ
n_ . [t+t] = € ac S (84)

and Ae = Aé at Se. ‘ (85)

Note that gt = g?(alanm) is the gradient operator at p at time t. In the
above, E.are prescribed tractions at (t+At) as measured per unit area of surface
St at time t. It should be noted that when the potential AU for At is as defined
in Eq. (79), the AMB Eq. (81) is automatically embedded in the structure of AU,
as discussed in [15].

Now we show that for a closed volume Jt (at time t) wherein a=constant :
(i.e., a volume which is everywhere experiencing loading or everywhere exper-
iencing unloading), and which is free fron any singularities or other defects,

the following vector integral is zero.

Q= f Y, (Tidetsl) - (T 1) : de - gt'. [(1+a) . del
Ve
- pt(ffg) . Ag} dv + .}; [gt . (r+ar) - t] . Aeds
t
+ f n . (t+at) . (Be-ae) ds. (86)
8

Note again that, in general, AU = AU{a(p)] but, within the considered Ve

a = constant = 1 or = 0. The proof of the above statement is based on the
results:
o . N - " N . \ m
Lt[F'A%] = (ytf) :he + [T o2 ( L);m] g (87)
T m
v oAU = : .
Ve (at (he) 1g (88)

*




Since,

zta(p) = 0 for considered v, (89)
- T 3 . m
U, - [(x#ar) . se] = [V, . (z+bp)] . de + [(T+4t) " : (Be); 1 g, (90)

From Eqs. (87-89), (80), and (82~85), the validity of Eq. (86) is immediately
evident. :

For instance, in a 2-dimensional dynamic elasto-plastic problem, con-
sider two pachd‘Ff and Fg surrounding the crack-tip as shown in Fig. 1.

We note that within the region (vl)c enclosed by Ff, there can be regions
of both plastic loading and elastic unloading, i.e., @ can be either 1 or

0 at various points within (vl)t' However, within the region (vz-vl)t, i.e.,

the region between the paths Ff and T#*, there can be either only loading or :
|
only unloading, i.e., within the region (v2-vl)t, either a=lonly or =0 only. In this]

case, we have in view of Eq. (86):

0= ‘j' '9(tiaeHl) - (V1) ¢ e - 5, . [(xHAE) . el
vz—vl),

-ot<f_—g>.A~:}Ev+f [ () -E) e ds+f e (1HD- (e=iDds (D
SN (501

Recall that in the case of an elastic material, the basic result of vanishing

of a certain integral in 4 volume frce from singularities, i.e., Eq. (26), was

applied to a region V—VLJ and the integral vector J was defined as the non-

vanishing limit of a contour integral on FL in the limit ¢»0, as in Eqs. (36)

or (41). Note that €q. (91) of the clasto-plastic case is entirely analogous

to Eq. (26) of the elastic-case. However, in order for Eq. (91) to apply to

the region V-V6 in the limit ¢»0, the entire region (V-VE limit £40) must under-

go either plastic loading only, or elastic unloading (or remain purely elastic)

only. Such a situation is, in general, unlikelv in the case of (growing) cracks

in ductile materials, for a general domain V-V . 1If indeed these ~onditlons
——— t.

* . {ence A
For convenience, T \FE and rBCD of Fig. L are now renamed '} and T4, respectively

e ———— e > v ea . s - e e -
g




are met, and hence Eq. (91) is applicable, in the domain V-VE (Lt ¢+0), then
results entirely analogous to Eq. (36) or (41) can be derived, and a vecter
which is the limiting value of an integral on FE in the 1limit e€+0 can be iden-
tified. However, in general, let us consider the case when the conditions

for applicability of Eq. (91) are not met in V—V€ (Lt ¢+0) 1.e., Zta(P)#O in
V—Ve' Referring to Fig. ﬁ, it isvseen, in the limit e+,

Lt ‘V (t:8e+Al) - (V. 1):he - V. [(t+Ar) . Ae]
-0 -};—VE Tt e Tt T .

- o (fra) . Ae} dv + J:s 2 (o, . (z+op) - t] . feds

t'e

<+

j; FERRCER (de-23) ds| # 0 = R (say) (92)
S N
e’ €

where R can be seen to be an integr 1 over V-Vs of terms involving th(p).
Using the divergence theorem we can :ewrite Eq. (92), for instance, for a

2-dimensional domain indicated in Fi,.2a,
f (n ([:hg+AU) - n . <(144t) . Be>] ds + Lt [f [—Etz:bg
r e+0 V--VE

- b (f-a) . de] dv + [ ot [(r:aenal)t - (ride+s)7] ds
JT

12
J

R+ Lt f [n (v:Ae+aU) - n . <(1’+AE) . he~}] ds.
0 r T

[(E.0e)T + (E.0e)7) ds - f nt [<(i#AE) . BesT - <(T+AD). A§>-]ds}

12 12

.

AT (say). (93)
It is noted that comments, concerning FL"' I‘iz, ["1'2 etc., essentially similar
to those made in connection with Eq. (36) apply in the case of (93) as well,

In view of Eq. (91) it is seen that the integral on the extreme L.H.S5.

- 929 _

FIRE-T: W




of Eq. (93)is "path-independent™ (however the enclosed volumes V-VC will be dif-~

ferent) for any two paths Fzsa and F2,3,4, between which there is entirely loading

or entirely unloading i.e., a=1 or a=0 everywhere between the two paths. Speci-
fically, consider the situation when: (i)F23A encloses a volume V1 (including

the crack-tip) where there may be both loading and unloading taking place and

(i1) T encloses a vdlume vy such that in v -v, also, both loading and un-

2'3'4° 271
loading are occuring. Then the vector integrals (A_'I_‘)l (involving I‘234 on the

extreme L.H.S. of Eq. (93)) and (A_'I‘_)2 (involving r2'3'4')Wi11 not be equal.

On the other hand, in thelsituation when (1)F234 encloses v1 wherein there

may be both loading and unloading occuring and (ii)F2,3,4, encloses vy such that
in (vz—vl), either only loading or only unloading (or remain elastic) is taking

place, the integrals All and AIZ are equal:

It is noted that Al integral as evaluated on T fromEq.(93) "measures' not only

234

the severity of conditions near the crack-tip, but also the effect of transition
from plastic to elastic zoues in V-Ve enclosed by F234.
Now we shall considi r the physical meaning of the AT integral introduced

in Eq. (93). First, we r  te by the definition of the potential AU,

T :de + AU = 1 :de + % AET : de
1 T -
= (I+ 5 At ): Ae = AW (say). (94)

Thus AW is the total stress-working density increment during the time interval
t to (t+at). As shown in[1l4) and [15] we may write 4W in an alternate form,
using the conjugate variables as and AE’ where As is the incremental second
Piola-Kirchhoff stress such that (E+A§) is the total second Piola-Kirchhoff H

stress at time (t+At) as referred to the configuration at t. Thus:

1 T
AW = (¢+ 5 At ) i oAe

e

T
(1+ 5 48) : ae + 1 & (8c .ae) l
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% As) = Ae. (95)

~ (E+
Recall that 1 and As are both symmetric, and the symmetric Ae is the incremental
strain between times t and t + At as referred to the configuration at t. Using

the additive decomposition:

Ae = Age + Agp . (96)

= ’
where the subscripts e and p refer to "elastic" and "plastic" parts respectively,
we see that:

L1
MW = (1+ 5 Bg) (Age+A§p)

T : e+ AU

Awe + Awp. 97

Where Awe is "elastic'" part of incremental stress-working density (per unit
volume at time t) and Awp is the plastically‘dissipated portion of incremental
stress-working density. Let AK be the incremental kinetic energy, between t
and t + dt, per unit volume in b. It is seen that:

6K =0 .a . fu. | (98)

To simplify matters, let us consider: (i) a "mode 1" 2~dimensional problem,
wherein the crack-faces are free from ..y applied iractions or other constraints,
(ii) the body forces to be zero, and (iii) the crack is along the Xy axis.
Consider a volume V#*, in this 2-dimensional problem, which is enclosed by the
contour r234 as in Fig. 2. Let AWL. AWT, znd AK{ be the incremental potential

of external loads, incremental internal energy, and incremental kinetic

energy, respectively, of the volume V*, It is seen that:

r
awk = J A